import os
import xarray
import re
import pandas as pd
import json
import tempfile
import boto3
import rasterio
from datetime import datetime
from dateutil.relativedelta import relativedeltaAir-Sea CO₂ Flux, ECCO-Darwin Model v5
Documentation of data transformation
This script was used to transform the Air-Sea CO₂ Flux, ECCO-Darwin Mode dataset from netCDF to Cloud Optimized GeoTIFF (COG) format for display in the Greenhouse Gas (GHG) Center.
session = boto3.session.Session()
s3_client = session.client("s3")
bucket_name = (
"ghgc-data-store-dev" # S3 bucket where the COGs are stored after transformation
)
FOLDER_NAME = "ecco-darwin"
s3_fol_name = "ecco_darwin"
# Reading the raw netCDF files from local machine
files_processed = pd.DataFrame(
columns=["file_name", "COGs_created"]
) # A dataframe to keep track of the files that we have transformed into COGs
for name in os.listdir(FOLDER_NAME):
xds = xarray.open_dataset(
f"{FOLDER_NAME}/{name}",
engine="netcdf4",
)
xds = xds.rename({"y": "latitude", "x": "longitude"})
xds = xds.assign_coords(longitude=((xds.longitude / 1440) * 360) - 180).sortby(
"longitude"
)
xds = xds.assign_coords(latitude=((xds.latitude / 721) * 180) - 90).sortby(
"latitude"
)
variable = [var for var in xds.data_vars]
for time_increment in xds.time.values:
for var in variable[2:]:
filename = name.split("/ ")[-1]
filename_elements = re.split("[_ .]", filename)
data = xds[var]
data = data.reindex(latitude=list(reversed(data.latitude)))
data.rio.set_spatial_dims("longitude", "latitude", inplace=True)
data.rio.write_crs("epsg:4326", inplace=True)
# generate COG
COG_PROFILE = {"driver": "COG", "compress": "DEFLATE"}
filename_elements.pop()
filename_elements[-1] = filename_elements[-2] + filename_elements[-1]
filename_elements.pop(-2)
# # insert date of generated COG into filename
cog_filename = "_".join(filename_elements)
# # add extension
cog_filename = f"{cog_filename}.tif"
with tempfile.NamedTemporaryFile() as temp_file:
data.rio.to_raster(temp_file.name, **COG_PROFILE)
s3_client.upload_file(
Filename=temp_file.name,
Bucket=bucket_name,
Key=f"{s3_fol_name}/{cog_filename}",
)
files_processed = files_processed._append(
{"file_name": name, "COGs_created": cog_filename},
ignore_index=True,
)
del data
print(f"Generated and saved COG: {cog_filename}")
# Generate the json file with the metadata that is present in the netCDF files.
with tempfile.NamedTemporaryFile(mode="w+") as fp:
json.dump(xds.attrs, fp)
json.dump({"data_dimensions": dict(xds.dims)}, fp)
json.dump({"data_variables": list(xds.data_vars)}, fp)
fp.flush()
s3_client.upload_file(
Filename=fp.name,
Bucket=bucket_name,
Key="s3_fol_name/metadata.json",
)
# A csv file to store the names of all the files converted.
files_processed.to_csv(
f"s3://{bucket_name}/{s3_fol_name}/files_converted.csv",
)
print("Done generating COGs")