import os
import xarray
import re
import pandas as pd
import json
import tempfile
import boto3
import rasterio
from datetime import datetime
from dateutil.relativedelta import relativedeltaOCO-2 MIP Top-Down CO₂ Budgets
Documentation of data transformation
This script was used to transform the OCO-2 MIP Top-Down CO₂ Budgets dataset from netCDF to Cloud Optimized GeoTIFF (COG) format for display in the Greenhouse Gas (GHG) Center.
session = boto3.session.Session()
s3_client = session.client("s3")
bucket_name = "ghgc-data-store-dev" # S3 bucket where the COGs are to be stored
year_ = datetime(2015, 1, 1) # Initialize the starting date time of the dataset.
COG_PROFILE = {"driver": "COG", "compress": "DEFLATE"}
# Reading the raw netCDF files from local machine
files_processed = pd.DataFrame(columns=["file_name", "COGs_created"]) # A dataframe to keep track of the files that are converted into COGs
for name in os.listdir("new_data"):
ds = xarray.open_dataset(
f"new_data/{name}",
engine="netcdf4",
)
ds = ds.rename({"latitude": "lat", "longitude": "lon"})
# assign coords from dimensions
ds = ds.assign_coords(lon=(((ds.lon + 180) % 360) - 180)).sortby("lon")
ds = ds.assign_coords(lat=list(ds.lat))
variable = [var for var in ds.data_vars]
for time_increment in range(0, len(ds.year)):
for var in variable[2:]:
filename = name.split("/ ")[-1]
filename_elements = re.split("[_ .]", filename)
try:
data = ds[var].sel(year=time_increment)
date = year_ + relativedelta(years=+time_increment)
filename_elements[-1] = date.strftime("%Y")
# # insert date of generated COG into filename
filename_elements.insert(2, var)
cog_filename = "_".join(filename_elements)
# # add extension
cog_filename = f"{cog_filename}.tif"
except KeyError:
data = ds[var]
date = year_ + relativedelta(years=+(len(ds.year) - 1))
filename_elements.pop()
filename_elements.append(year_.strftime("%Y"))
filename_elements.append(date.strftime("%Y"))
filename_elements.insert(2, var)
cog_filename = "_".join(filename_elements)
# # add extension
cog_filename = f"{cog_filename}.tif"
data = data.reindex(lat=list(reversed(data.lat)))
data.rio.set_spatial_dims("lon", "lat")
data.rio.write_crs("epsg:4326", inplace=True)
# generate COG
COG_PROFILE = {"driver": "COG", "compress": "DEFLATE"}
with tempfile.NamedTemporaryFile() as temp_file:
data.rio.to_raster(temp_file.name, **COG_PROFILE)
s3_client.upload_file(
Filename=temp_file.name,
Bucket=bucket_name,
Key=f"ceos_co2_flux/{cog_filename}",
)
files_processed = files_processed._append(
{"file_name": name, "COGs_created": cog_filename},
ignore_index=True,
)
print(f"Generated and saved COG: {cog_filename}")
# creating the csv file with the names of files transformed.
files_processed.to_csv(
f"s3://{bucket_name}/ceos_co2_flux/files_converted.csv",
)
print("Done generating COGs")