import xarray
import re
import pandas as pd
import json
import tempfile
import boto3
import osOCO-2 GEOS Column CO₂ Concentrations
Documentation of data transformation
This script was used to transform the OCO-2 GEOS Column CO₂ Concentrations dataset from netCDF to Cloud Optimized GeoTIFF (COG) format for display in the Greenhouse Gas (GHG) Center.
session = boto3.Session()
s3_client = session.client("s3")
bucket_name = (
"ghgc-data-store-dev" # S3 bucket where the COGs are stored after transformation
)
FOLDER_NAME = "earth_data/geos_oco2"
s3_folder_name = "geos-oco2"
error_files = []
count = 0
files_processed = pd.DataFrame(
columns=["file_name", "COGs_created"]
) # A dataframe to keep track of the files that we have transformed into COGs
# Reading the raw netCDF files from local machine
for name in os.listdir(FOLDER_NAME):
try:
xds = xarray.open_dataset(f"{FOLDER_NAME}/{name}", engine="netcdf4")
xds = xds.assign_coords(lon=(((xds.lon + 180) % 360) - 180)).sortby("lon")
variable = [var for var in xds.data_vars]
filename = name.split("/ ")[-1]
filename_elements = re.split("[_ .]", filename)
for time_increment in range(0, len(xds.time)):
for var in variable:
filename = name.split("/ ")[-1]
filename_elements = re.split("[_ .]", filename)
data = getattr(xds.isel(time=time_increment), var)
data = data.isel(lat=slice(None, None, -1))
data.rio.set_spatial_dims("lon", "lat", inplace=True)
data.rio.write_crs("epsg:4326", inplace=True)
# # insert date of generated COG into filename
filename_elements[-1] = filename_elements[-3]
filename_elements.insert(2, var)
filename_elements.pop(-3)
cog_filename = "_".join(filename_elements)
# # add extension
cog_filename = f"{cog_filename}.tif"
with tempfile.NamedTemporaryFile() as temp_file:
data.rio.to_raster(
temp_file.name,
driver="COG",
)
s3_client.upload_file(
Filename=temp_file.name,
Bucket=bucket_name,
Key=f"{s3_folder_name}/{cog_filename}",
)
files_processed = files_processed._append(
{"file_name": name, "COGs_created": cog_filename},
ignore_index=True,
)
count += 1
print(f"Generated and saved COG: {cog_filename}")
except OSError:
error_files.append(name)
pass
# Generate the json file with the metadata that is present in the netCDF files.
with tempfile.NamedTemporaryFile(mode="w+") as fp:
json.dump(xds.attrs, fp)
json.dump({"data_dimensions": dict(xds.dims)}, fp)
json.dump({"data_variables": list(xds.data_vars)}, fp)
fp.flush()
s3_client.upload_file(
Filename=fp.name,
Bucket=bucket_name,
Key=f"{s3_folder_name}/metadata.json",
)
# creating the csv file with the names of files transformed.
files_processed.to_csv(
f"s3://{bucket_name}/{s3_folder_name}/files_converted.csv",
)
print("Done generating COGs")